ラズパイ立ち上げ時のアプリ自動起動と発生した問題

Raspberry PIでブート時にアプリを自動で立ち上げる方法は、以前は/etc/rc.localに記述という方法もありましたが、今は

https://www.raspberrypirulo.net/entry/systemd

にあるように/lib/systemd/system/配下にxxx.serviceファイルで条件記述して、

$ sudo systemctl start xxx.service

を使うのが推奨だし安定して使えるかと思いますが、震度計で記述したときに問題が起きたのでその状況と回避方法を

/lib/systemd/system/seismic.serviceで以下の内容を記述して、

[Unit]

Description = measure

[Service]

ExecStart=/usr/bin/python3 /home/pi/python/seismic.py

Restart=no

Type=oneshot

[Install]

WantedBy=multi-user.target

ラズパイブート時のseismic.serviceの起動で,

Sep 27 20:44:06 rasp-z python3[298]:   File "/home/pi/python/seismic.py", line 47, >

Sep 27 20:44:06 rasp-z python3[298]:     spi.open(0,0)

Sep 27 20:44:06 rasp-z python3[298]: FileNotFoundError: [Errno 2] No such file or d>

こんなエラーが出て起動できない、起動後の実行

$ sudo systemctl start seismic.service

だと問題ない、ということはタイミング問題じゃないかということでseismic.pyの最初で時間待ち(20秒)させてやったら、問題なく起動できました。

本来はサービスの起動条件をseismic.serviceファイルのパラメータで設定して対応すべきことかと思いますが、

<systemdの解説記事>

https://office54.net/iot/linux/systemd-unit-create

 

admin

地震計を作ってみる(その3)

取り敢えずOLCDに震度測定値を表示できるようにした。あとラズパイのシャットダウンがネットワーク未接続でも対応できるようにシャットダウンボタンを追加、

現時点でのコード

<seismic.py>

#
# core code is as follow
# https://github.com/p2pquake/rpi-seismometer/blob/master/seismic_scale.py
#
import time
import datetime
import math
import socket

import spidev
import os
import sys

import RPi.GPIO as GPIO
import subprocess

# FPS制御 -----
# ターゲットFPS
target_fps = 200

start_time = time.time()
frame = 0

# initial skip
skip = 7

# Shut down sw is assigned to GPIO17
# GPIO initialize
SHUTDOWN = 17

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
GPIO.setup(SHUTDOWN, GPIO.IN)
GPIO.setup(SHUTDOWN, GPIO.IN, pull_up_down=GPIO.PUD_UP)

# wait for spidev driver ready
time.sleep(20)

def handle_sw_input():
# wait key inout event
    def switch_callback(gpio_pin):
        subprocess.call('sudo shutdown -h now', shell=True)
#
    GPIO.add_event_detect(SHUTDOWN, GPIO.FALLING,bouncetime=250)
    # when the sw was pushed, call the 'call back routine' 
    GPIO.add_event_callback(SHUTDOWN, switch_callback) 
    return

handle_sw_input()

# SPIセンサ制御 -----
spi = spidev.SpiDev()
spi.open(0,0)
spi.max_speed_hz = 1000*1000

def ReadChannel(channel):
    adc = spi.xfer2([(0x07 if (channel & 0x04) else 0x06), (channel & 0x03) << 6, 0])
    data = ((adc[1] & 0x0f) << 8 ) | adc[2] return data # reset the seisamic intensity with open("/home/pi/python/value.txt", "w") as file: file.write("0") file.close() # 加速度データ制御 ----- # A/Dコンバータ値 -> ガル値 係数
ad2gal = 1.13426
# 0.3秒空間数
a_frame  = int(target_fps * 0.3)

# 地震データ -----
adc_values = [[1] * target_fps, [1] * target_fps, [1] * target_fps]
rc_values   = [0, 0, 0]
a_values = [0] * target_fps * 5

adc_ring_index = 0
a_ring_index = 0

# リアルタイム震度計算 -----
while True:
    # リングバッファ位置計算
    adc_ring_index = (adc_ring_index + 1) % target_fps
    a_ring_index = (a_ring_index + 1) % (target_fps * 5)

    # 3軸サンプリング
    for i in range(3):
        val = ReadChannel(i)
        adc_values[i][adc_ring_index] = val
   
    # フィルタ適用及び加速度変換
    axis_gals = [0, 0, 0]
    for i in range(3):
        offset = sum(adc_values[i])/len(adc_values[i])
        rc_values[i] = rc_values[i]*0.94+adc_values[i][adc_ring_index]*0.06
        axis_gals[i] = (rc_values[i] - offset) * ad2gal

    # 3軸合成加速度算出
    composite_gal = math.sqrt(axis_gals[0]**2 + axis_gals[1]**2 + axis_gals[2]**2)

    # 加速度リングバッファに格納
    a_values[a_ring_index] = composite_gal

    # 0.3秒以上継続した合成加速度から震度を算出
    seismic_scale = 0
    min_a = sorted(a_values)[-a_frame]
    if min_a > 0:
      seismic_scale = 2 * math.log10(min_a) + 0.94

    # 0.1秒おきに出力
    if frame % (target_fps / 1) == 0:
            if seismic_scale > 0.5:
                if skip > 1:
                    skip -= 1
                else:
                    with open("/home/pi/python/value.txt", "w") as file:
                        file.write(str(round(seismic_scale, 1)))
                        file.close()
                    #print(datetime.datetime.now(), "scale:" , round(seismic_scale, 2), " frame:", frame)

    # 次フレームの開始時間を計算
    frame += 1
    next_frame_time = frame / target_fps

    # 残時間を計算し、スリープ
    current_time = time.time()
    remain_time = next_frame_time - (current_time - start_time)

    if remain_time > 0:
        time.sleep(remain_time)

    # フレーム数は32bit long値の上限あたりでリセットしておく
    if frame >= 2147483647:
        start_time = current_time
        frame = 1

表示(disp1.py)にはvalue.txtファイルを介在してデータ渡してます、時間情報と合わせてsqlite3に格納するようにする予定

<disp1.py>

import time
import board
import digitalio
from PIL import Image, ImageDraw, ImageFont
import adafruit_ssd1306

# Define the Reset Pin
oled_reset = digitalio.DigitalInOut(board.D4)

# Change these
# to the right size for your display!
WIDTH = 128
#HEIGHT = 32  # Change to 64 if needed
HEIGHT = 64  # Change to 64 if needed
BORDER = 5

# Use for I2C.
i2c = board.I2C()
oled = adafruit_ssd1306.SSD1306_I2C(WIDTH, HEIGHT, i2c, addr=0x3C, reset=oled_reset)

# Use for SPI
# spi = board.SPI()
# oled_cs = digitalio.DigitalInOut(board.D5)
# oled_dc = digitalio.DigitalInOut(board.D6)
# oled = adafruit_ssd1306.SSD1306_SPI(WIDTH, HEIGHT, spi, oled_dc, oled_reset, oled_cs)

# Clear display.
oled.fill(0)
oled.show()

# Create blank image for drawing.
# Make sure to create image with mode '1' for 1-bit color.
image = Image.new("1", (oled.width, oled.height))

# Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

# Load default font.
font = ImageFont.truetype("fonts-japanese-gothic.ttf", 32)
#font = ImageFont.load_default()

# Draw Some Text
while True:
    with open("/home/pi/python/value.txt", "r") as file:
        text = file.read()
    image = Image.new("1", (oled.width, oled.height))
    draw = ImageDraw.Draw(image)
    #text = str(mag)
    (font_width, font_height) = font.getsize(text)
    draw.text(
        (oled.width // 2 - font_width // 2, oled.height // 2 - font_height // 2),
        text,
        font=font,
        fill=255,
    )

# Display image
    oled.image(image)
    oled.show()
    time.sleep(1)

震度は対数メモリでの尺度だから、震度七の強烈さはよく実感できます。

 

admin

地震計を作ってみる(その2)

部品実装と配線、配線チェックと単体の機能試験まで、

① 回路図:ライブラリが存在しないパーツは適宜置き換え、三端子、加速度センサー、OLECD、ライブラリあったのはラズパイI/FとADCだけという結果

アナログ電源はノイズ除去のためにL/Cでπ型のフィルタ構成にしています、ラズパイやM5StackなどのADCではデジタルノイズ混入しまくりだし、精度も10ビットしか取れないので震度計算の目的には使えないでしょう

 

P.S. 2024/10/1 回路図誤記修正(MCP3004電源)

 

② 実装と配線

アナロググランドは一点アース、この程度の周波数だとそれがベストだろう

③ 機能確認

・OLCD

https://qiita.com/tkarube/items/6808538012cba499d5e2

CircuitPythonのライブラリを使うのが今は推奨だが、動くだけなら旧ライブラリでも動くようだ

・加速度センサー

https://note.com/upyc101/n/nd3a1d606adf2

静止状態で一万回読み出して、最大値と最小値は、

python ./main.py
1259 1262
2045 2048
1843 1847

z, y, x座標の値ですが、z軸の値は重力加速度が加算(モジュールを裏返しにしている)されます。ガル値の計算では測定値からオフセットは差し引いていますが

S/Nでフルスケールに対してノイズレベルはおよそ60dB(およそ2/2000)はとれてるからまあまあではないか、

サンプルの最大・最小値を求めるために、リンクのコードのmain.pyは以下に変更、

import sub1

value_array = [
	[4000, 0],
	[4000, 0],
	[4000, 0]
]
adc = sub1.adc()    # クラス adc のインスタンスを作成

for j in range(10000):
	for i in range(3):
		c = adc.rdadc(i) 
		if c > value_array[i][1]:
			value_array[i][1] = c
		if c < value_array[i][0]:
			value_array[i][0] = c 
print(value_array[0][0], value_array[0][1])
print(value_array[1][0], value_array[1][1])
print(value_array[2][0], value_array[2][1])

 

admin

地震計を作ってみる

日本はいつも地震がどこかで発生しているから、自宅の揺れぐらいは観測してみたい。

https://greensoybean.hatenablog.com/search?q=地震計

を参考に作ってみる、最終的にはコードはRustにしてしまうつもりだけど、

地震計用のラズパイzeroはだいぶ前に調達済みで、地震計用の加速度計、三端子レギュレータ、ユニバ基板とコネクタ、ADコン、OLEDは部品調達して、基盤においてみた。

次のステップはアナロググランドとデジタルグランドをセパレーションして配線すること。

 

admin

Rust(@Raspberry PI zero)のクロスコンパイル環境構築

当然ながらzeroの能力ではRustのコンパイルには時間かかるので、クロス環境が必要です。以前Golang用のDocker(QEMU環境)では上手くいかなかった、おそらくlinkerの問題なのか、ので代替え案としてIntel MacのVMware環境でのUbuntuで環境作りました。

https://www.freecodecamp.org/news/embedded-rust-programming-on-raspberry-pi-zero-w/

を参考にしています。

いくつか修正が必要だったので、そこを記述します。

・ターゲットインストールのコマンドはtargetとaddが逆になってる

$ rustup target add arm-unknown-linux-gnueabihf configはobslete

 

・~/.cargo/configを使うのは古くて(obsoleteと言われる)コンパイル通らないから、.cargo/config.tomlに入れる(以下のように)てlinker対象ファイルはパスを通すかフルパスで指定

[target.arm-unknown-linux-gnueabihf]

linker = "/rpi_tools/arm-bcm2708/arm-rpi-4.9.3-linux-gnueabihf/bin/arm-linux-gnueabihf-gcc"

 

・hello worldのサンプルプログラムをcargo initで作成(sampleディレクトリに)してコンパイル

fn main() {
    println!("Hello, world! from Ubuntu compiler");
}
$ cargo build --release --target=arm-unknown-linux-gnueabihf

 

・バイナリをラズパイに転送(実行ファイルはsample/target/arm-unknown-linux-gnueabihf/release以下に存在)

$ scp release/sample pi@192.168.1.16:~/sample

 

・ラズパイで実行

$ ./sample

Hello, world! from Ubuntu compiler

 

ただし、

https://github.com/raspberrypi/tools

のページには、

tools

These toolchains are deprecated. They are outdated and easily available from other sources (e.g. direct from Ubuntu apt). e.g.

sudo apt-get install gcc-arm-linux-gnueabihf

とあるので、このやり方の方がスマートなのかもしれない。

クロスコンパイルには他にはcrossとDockerを使うやり方もありますが、それほどのアドバンテージがあるようには思えないから当面この環境かな。

 

admin

 

cargo-edit tool

rustはパッケージ管理が楽なのですが、それをさらに補強するツールがcargo-editです。

https://tkyonezu.com/開発ツール-言語/raspberry-pi-に-rust-をインストールする/

を参考にラズパイ zeroにrustインスト後にcargo-editをインスト、ツールのインストには流石にzeroなのでたっぷり時間かかって(二時間ぐらいか)完了、一度はエラー終了したので再度実行。

何が便利かというと、例えばcargo add xxxxでcrate xxxxの最新版を自動で探して(版数指定もできますが)Cargo.tomlに追加してくれます。

例えばrandを追加すると、

$ cargo add rand
    Updating crates.io index
      Adding rand v0.8.5 to dependencies

で、Cargo.tomlの[dependencies]にrandが追加されています。

 

admin

NT東京 2024

NT(Tanka Tukuttemiyo)の見学に科学技術館に行ってきましたが、ここではRustの話とワークベンチの出展について

ESP32をRustがサポートするようになったので作ってみたESP32評価ボードだそうです

 

ワークベンチが欲しくて作ってみたというもの、自分の城のようなものですが、搬入がめちゃくちゃ大変で、組み立て時間は制限時間の一時間では終わらず30分超過したとか

霧箱とかの話題はnoteに、記載してます

https://note.com/coderdojoisehara/n/n9500fcb2bc85

 

admin