ホバークラフト(ver2.1ぐらい)

3Dプリンタの熱にも耐えられる季節になってきたので、ホーバークラフトのアップデートをしてみる

① PLA性は車の中に放置されると軟化してグダグダになるので材料はABSに変更

造形パラメターはチューニングが必要、プラットホームから剥離対策(樹脂押し出し量増やして接地面積大きくする)とラフトとオブジェクトの距離設定が大きくて最初の層の密着が改善用(デフォルトで良いけどPLAだとうまく剥がれないから大きめにしていた)

 

② ファンの位置極めができるようにバンプを追加

裏側から隙間テープで留めて、ファンの水へからの角度を安定させる

 

③ 移動方向側のファンの回転数を浮上できる範囲で小さくする

つまり回転数の差を大きくして反対側が持ち上がる量を大きくしてやることで推力を増加してやる

 

 

PWM指定で最大値は1024、

 

以上で左右(前後)方向の移動はコントロールできるようになった、動画は以下のリンクから

マイムービー – SD 480p

ただし当然の如くドリフトはするから、micro:bitの加速度センサーとジャイロ(コンパス)機能使ってフィードバックして安定したポジションを取るようにするのが次のステップ

 

admin

 

 

ssd1306をRustで動かす

ラズパイゼロのRustクロス環境使って、ssd1306を動かしてみる

以下のリンクのサンプルプログラムを動かしてみただけですが、

https://github.com/fmckeogh/ssd1306-raspi-examples/tree/master

クロス環境はVMware +Ubuntu(20.xx)の環境です

Rust(@Raspberry PI zero)のクロスコンパイル環境構築

Cargo.tomlはそのまま使い、examplesディレクトリのgraphics-i2c.rsをビルドしてラズパイにscpで転送して実行した結果は以下のようになります

ADCもFFTもどちらのcrateも存在しているようだから、PythonコードをRustで置き換えできそうです

 

admi

地震計を作ってみる(その4)— コードと回路からの考察

震度計算で気象庁から提示されているのは以下のリンクになります。

https://www.data.jma.go.jp/eqev/data/kyoshin/kaisetsu/calc_sindo.html

じゃ、近似計算でどの程度近似なのかをちょっと考察、

計算方法は① 加速度波形を周波数軸に変換(実質FFT)して、② 重み付けを行ない、さらに③ それを周波数に変換(実質IFFT)して、④ 0.3秒以上継続する値の最小値を求めて⑤ 震度計算式(対数目盛)で求めた値を四捨五入と切り捨てで震度とする、というステップになりますが、

近似計算と気象庁提示の差分のポイントは、②の周波数重み付けに差があります、このフィルターの特性は建物や構造物への影響度を考慮したものだと思われます

filter.png

近似計算方式では、ハイカット側はデジタル処理ではなくて、以下の回路図で加速度計に付加されているキャパシタ(0.1μF)で一次のカットオフ周波数30Hzぐらい(デフォルトでは内蔵の3300pFでカットオフ800Hzを変化させている、一方ロー側は格段の処理はされていない模様

コード(以下のリンク)でフィルター処理のコメントありますが、実質は平滑処理になってます

https://github.com/p2pquake/rpi-seismometer/blob/master/seismic_scale.py

とはいえ、FFTを使って計算するのとそれほどの差があるわけでもなさそうだから、実用的には十分じゃないかというところで、正確に震度を求めようとすると計測器を設置する工事だけでも大変なのだから

 

P.S. pythonでnumpyの機能にあるFFTを実行してみると、

M1 Macとラズパイzeroでの速度比較

<用意したデータ>
sampling_rate = 2000  # サンプリング周波数(Hz)
T = 1 / sampling_rate  # サンプリング間隔
t = np.arange(0, 1.0, T)  # 時間ベクトル

# 信号生成(50Hzと120Hzのサイン波を重ねたもの)
f1 = 100  # Hz
f2 = 300  # Hz
signal = np.sin(2*np.pi*f1*t) + 0.5*np.sin(2*np.pi*f2*t)

<実行速度>
M1 Mac:		np.fft.fft:     0.000027 [sec] 
ラズパイゼロ:	np.fft.fft:	 0.001830 [sec] 

ふーむ、およそ60倍ぐらい違うか、想定範囲だけど

ラズパイzeroでもフレーム周期5msでできなくはなさそうなレベル

 

admin

ラズパイ立ち上げ時のアプリ自動起動と発生した問題

Raspberry PIでブート時にアプリを自動で立ち上げる方法は、以前は/etc/rc.localに記述という方法もありましたが、今は

https://www.raspberrypirulo.net/entry/systemd

にあるように/lib/systemd/system/配下にxxx.serviceファイルで条件記述して、

$ sudo systemctl start xxx.service

を使うのが推奨だし安定して使えるかと思いますが、震度計で記述したときに問題が起きたのでその状況と回避方法を

/lib/systemd/system/seismic.serviceで以下の内容を記述して、

[Unit]

Description = measure

[Service]

ExecStart=/usr/bin/python3 /home/pi/python/seismic.py

Restart=no

Type=oneshot

[Install]

WantedBy=multi-user.target

ラズパイブート時のseismic.serviceの起動で,

Sep 27 20:44:06 rasp-z python3[298]:   File "/home/pi/python/seismic.py", line 47, >

Sep 27 20:44:06 rasp-z python3[298]:     spi.open(0,0)

Sep 27 20:44:06 rasp-z python3[298]: FileNotFoundError: [Errno 2] No such file or d>

こんなエラーが出て起動できない、起動後の実行

$ sudo systemctl start seismic.service

だと問題ない、ということはタイミング問題じゃないかということでseismic.pyの最初で時間待ち(20秒)させてやったら、問題なく起動できました。

本来はサービスの起動条件をseismic.serviceファイルのパラメータで設定して対応すべきことかと思いますが、

<systemdの解説記事>

https://office54.net/iot/linux/systemd-unit-create

 

admin

地震計を作ってみる(その3)

取り敢えずOLCDに震度測定値を表示できるようにした。あとラズパイのシャットダウンがネットワーク未接続でも対応できるようにシャットダウンボタンを追加、

現時点でのコード

<seismic.py>

#
# core code is as follow
# https://github.com/p2pquake/rpi-seismometer/blob/master/seismic_scale.py
#
import time
import datetime
import math
import socket

import spidev
import os
import sys

import RPi.GPIO as GPIO
import subprocess

# FPS制御 -----
# ターゲットFPS
target_fps = 200

start_time = time.time()
frame = 0

# initial skip
skip = 7

# Shut down sw is assigned to GPIO17
# GPIO initialize
SHUTDOWN = 17

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
GPIO.setup(SHUTDOWN, GPIO.IN)
GPIO.setup(SHUTDOWN, GPIO.IN, pull_up_down=GPIO.PUD_UP)

# wait for spidev driver ready
time.sleep(20)

def handle_sw_input():
# wait key inout event
    def switch_callback(gpio_pin):
        subprocess.call('sudo shutdown -h now', shell=True)
#
    GPIO.add_event_detect(SHUTDOWN, GPIO.FALLING,bouncetime=250)
    # when the sw was pushed, call the 'call back routine' 
    GPIO.add_event_callback(SHUTDOWN, switch_callback) 
    return

handle_sw_input()

# SPIセンサ制御 -----
spi = spidev.SpiDev()
spi.open(0,0)
spi.max_speed_hz = 1000*1000

def ReadChannel(channel):
    adc = spi.xfer2([(0x07 if (channel & 0x04) else 0x06), (channel & 0x03) << 6, 0])
    data = ((adc[1] & 0x0f) << 8 ) | adc[2] return data # reset the seisamic intensity with open("/home/pi/python/value.txt", "w") as file: file.write("0") file.close() # 加速度データ制御 ----- # A/Dコンバータ値 -> ガル値 係数
ad2gal = 1.13426
# 0.3秒空間数
a_frame  = int(target_fps * 0.3)

# 地震データ -----
adc_values = [[1] * target_fps, [1] * target_fps, [1] * target_fps]
rc_values   = [0, 0, 0]
a_values = [0] * target_fps * 5

adc_ring_index = 0
a_ring_index = 0

# リアルタイム震度計算 -----
while True:
    # リングバッファ位置計算
    adc_ring_index = (adc_ring_index + 1) % target_fps
    a_ring_index = (a_ring_index + 1) % (target_fps * 5)

    # 3軸サンプリング
    for i in range(3):
        val = ReadChannel(i)
        adc_values[i][adc_ring_index] = val
   
    # フィルタ適用及び加速度変換
    axis_gals = [0, 0, 0]
    for i in range(3):
        offset = sum(adc_values[i])/len(adc_values[i])
        rc_values[i] = rc_values[i]*0.94+adc_values[i][adc_ring_index]*0.06
        axis_gals[i] = (rc_values[i] - offset) * ad2gal

    # 3軸合成加速度算出
    composite_gal = math.sqrt(axis_gals[0]**2 + axis_gals[1]**2 + axis_gals[2]**2)

    # 加速度リングバッファに格納
    a_values[a_ring_index] = composite_gal

    # 0.3秒以上継続した合成加速度から震度を算出
    seismic_scale = 0
    min_a = sorted(a_values)[-a_frame]
    if min_a > 0:
      seismic_scale = 2 * math.log10(min_a) + 0.94

    # 0.1秒おきに出力
    if frame % (target_fps / 1) == 0:
            if seismic_scale > 0.5:
                if skip > 1:
                    skip -= 1
                else:
                    with open("/home/pi/python/value.txt", "w") as file:
                        file.write(str(round(seismic_scale, 1)))
                        file.close()
                    #print(datetime.datetime.now(), "scale:" , round(seismic_scale, 2), " frame:", frame)

    # 次フレームの開始時間を計算
    frame += 1
    next_frame_time = frame / target_fps

    # 残時間を計算し、スリープ
    current_time = time.time()
    remain_time = next_frame_time - (current_time - start_time)

    if remain_time > 0:
        time.sleep(remain_time)

    # フレーム数は32bit long値の上限あたりでリセットしておく
    if frame >= 2147483647:
        start_time = current_time
        frame = 1

表示(disp1.py)にはvalue.txtファイルを介在してデータ渡してます、時間情報と合わせてsqlite3に格納するようにする予定

<disp1.py>

import time
import board
import digitalio
from PIL import Image, ImageDraw, ImageFont
import adafruit_ssd1306

# Define the Reset Pin
oled_reset = digitalio.DigitalInOut(board.D4)

# Change these
# to the right size for your display!
WIDTH = 128
#HEIGHT = 32  # Change to 64 if needed
HEIGHT = 64  # Change to 64 if needed
BORDER = 5

# Use for I2C.
i2c = board.I2C()
oled = adafruit_ssd1306.SSD1306_I2C(WIDTH, HEIGHT, i2c, addr=0x3C, reset=oled_reset)

# Use for SPI
# spi = board.SPI()
# oled_cs = digitalio.DigitalInOut(board.D5)
# oled_dc = digitalio.DigitalInOut(board.D6)
# oled = adafruit_ssd1306.SSD1306_SPI(WIDTH, HEIGHT, spi, oled_dc, oled_reset, oled_cs)

# Clear display.
oled.fill(0)
oled.show()

# Create blank image for drawing.
# Make sure to create image with mode '1' for 1-bit color.
image = Image.new("1", (oled.width, oled.height))

# Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

# Load default font.
font = ImageFont.truetype("fonts-japanese-gothic.ttf", 32)
#font = ImageFont.load_default()

# Draw Some Text
while True:
    with open("/home/pi/python/value.txt", "r") as file:
        text = file.read()
    image = Image.new("1", (oled.width, oled.height))
    draw = ImageDraw.Draw(image)
    #text = str(mag)
    (font_width, font_height) = font.getsize(text)
    draw.text(
        (oled.width // 2 - font_width // 2, oled.height // 2 - font_height // 2),
        text,
        font=font,
        fill=255,
    )

# Display image
    oled.image(image)
    oled.show()
    time.sleep(1)

震度は対数メモリでの尺度だから、震度七の強烈さはよく実感できます。

 

admin

地震計を作ってみる(その2)

部品実装と配線、配線チェックと単体の機能試験まで、

① 回路図:ライブラリが存在しないパーツは適宜置き換え、三端子、加速度センサー、OLECD、ライブラリあったのはラズパイI/FとADCだけという結果

アナログ電源はノイズ除去のためにL/Cでπ型のフィルタ構成にしています、ラズパイやM5StackなどのADCではデジタルノイズ混入しまくりだし、精度も10ビットしか取れないので震度計算の目的には使えないでしょう

 

P.S. 2024/10/1 回路図誤記修正(MCP3004電源)

 

② 実装と配線

アナロググランドは一点アース、この程度の周波数だとそれがベストだろう

③ 機能確認

・OLCD

https://qiita.com/tkarube/items/6808538012cba499d5e2

CircuitPythonのライブラリを使うのが今は推奨だが、動くだけなら旧ライブラリでも動くようだ

・加速度センサー

https://note.com/upyc101/n/nd3a1d606adf2

静止状態で一万回読み出して、最大値と最小値は、

python ./main.py
1259 1262
2045 2048
1843 1847

z, y, x座標の値ですが、z軸の値は重力加速度が加算(モジュールを裏返しにしている)されます。ガル値の計算では測定値からオフセットは差し引いていますが

S/Nでフルスケールに対してノイズレベルはおよそ60dB(およそ2/2000)はとれてるからまあまあではないか、

サンプルの最大・最小値を求めるために、リンクのコードのmain.pyは以下に変更、

import sub1

value_array = [
	[4000, 0],
	[4000, 0],
	[4000, 0]
]
adc = sub1.adc()    # クラス adc のインスタンスを作成

for j in range(10000):
	for i in range(3):
		c = adc.rdadc(i) 
		if c > value_array[i][1]:
			value_array[i][1] = c
		if c < value_array[i][0]:
			value_array[i][0] = c 
print(value_array[0][0], value_array[0][1])
print(value_array[1][0], value_array[1][1])
print(value_array[2][0], value_array[2][1])

 

admin

地震計を作ってみる

日本はいつも地震がどこかで発生しているから、自宅の揺れぐらいは観測してみたい。

https://greensoybean.hatenablog.com/search?q=地震計

を参考に作ってみる、最終的にはコードはRustにしてしまうつもりだけど、

地震計用のラズパイzeroはだいぶ前に調達済みで、地震計用の加速度計、三端子レギュレータ、ユニバ基板とコネクタ、ADコン、OLEDは部品調達して、基盤においてみた。

次のステップはアナロググランドとデジタルグランドをセパレーションして配線すること。

 

admin

Rust(@Raspberry PI zero)のクロスコンパイル環境構築

当然ながらzeroの能力ではRustのコンパイルには時間かかるので、クロス環境が必要です。以前Golang用のDocker(QEMU環境)では上手くいかなかった、おそらくlinkerの問題なのか、ので代替え案としてIntel MacのVMware環境でのUbuntuで環境作りました。

https://www.freecodecamp.org/news/embedded-rust-programming-on-raspberry-pi-zero-w/

を参考にしています。

いくつか修正が必要だったので、そこを記述します。

・ターゲットインストールのコマンドはtargetとaddが逆になってる

$ rustup target add arm-unknown-linux-gnueabihf configはobslete

 

・~/.cargo/configを使うのは古くて(obsoleteと言われる)コンパイル通らないから、.cargo/config.tomlに入れる(以下のように)てlinker対象ファイルはパスを通すかフルパスで指定

[target.arm-unknown-linux-gnueabihf]

linker = "/rpi_tools/arm-bcm2708/arm-rpi-4.9.3-linux-gnueabihf/bin/arm-linux-gnueabihf-gcc"

 

・hello worldのサンプルプログラムをcargo initで作成(sampleディレクトリに)してコンパイル

fn main() {
    println!("Hello, world! from Ubuntu compiler");
}
$ cargo build --release --target=arm-unknown-linux-gnueabihf

 

・バイナリをラズパイに転送(実行ファイルはsample/target/arm-unknown-linux-gnueabihf/release以下に存在)

$ scp release/sample pi@192.168.1.16:~/sample

 

・ラズパイで実行

$ ./sample

Hello, world! from Ubuntu compiler

 

ただし、

https://github.com/raspberrypi/tools

のページには、

tools

These toolchains are deprecated. They are outdated and easily available from other sources (e.g. direct from Ubuntu apt). e.g.

sudo apt-get install gcc-arm-linux-gnueabihf

とあるので、このやり方の方がスマートなのかもしれない。

クロスコンパイルには他にはcrossとDockerを使うやり方もありますが、それほどのアドバンテージがあるようには思えないから当面この環境かな。

 

admin

 

cargo-edit tool

rustはパッケージ管理が楽なのですが、それをさらに補強するツールがcargo-editです。

https://tkyonezu.com/開発ツール-言語/raspberry-pi-に-rust-をインストールする/

を参考にラズパイ zeroにrustインスト後にcargo-editをインスト、ツールのインストには流石にzeroなのでたっぷり時間かかって(二時間ぐらいか)完了、一度はエラー終了したので再度実行。

何が便利かというと、例えばcargo add xxxxでcrate xxxxの最新版を自動で探して(版数指定もできますが)Cargo.tomlに追加してくれます。

例えばrandを追加すると、

$ cargo add rand
    Updating crates.io index
      Adding rand v0.8.5 to dependencies

で、Cargo.tomlの[dependencies]にrandが追加されています。

 

admin

NT東京 2024

NT(Tanka Tukuttemiyo)の見学に科学技術館に行ってきましたが、ここではRustの話とワークベンチの出展について

ESP32をRustがサポートするようになったので作ってみたESP32評価ボードだそうです

 

ワークベンチが欲しくて作ってみたというもの、自分の城のようなものですが、搬入がめちゃくちゃ大変で、組み立て時間は制限時間の一時間では終わらず30分超過したとか

霧箱とかの話題はnoteに、記載してます

https://note.com/coderdojoisehara/n/n9500fcb2bc85

 

admin