Pythonで感情分析

chatbotの瞼を感情(悲しい、嬉しい)で動きを作るための仕掛け、

Pythonで形態素解析と、事象を参照してスコア化できるライブラリがあるのでそれを使う

辞書(wago.121808.pn)はLLMが教えてくれた東北大のサイトからダウンロードしてます

<Python script : LLM会話での現在形態>

必要なライブラリは、spacy/jaconv/ja-ginzaをpip install、spacyは多言語の形態素解析のできるライブラリでラズパイ5でもそこそこの速度で動作可能、辞書のサイズはおよそ五千語です

import spacy
import jaconv

# --- 辞書ロード関数 ---
def normalize_to_hiragana(text):
    """表記をひらがなに正規化"""
    return jaconv.kata2hira(jaconv.z2h(text, kana=True, digit=True, ascii=True))

def load_combined_sentiment_dict(paths):
    sentiment = {}
    for path in paths:
        with open(path, encoding='UTF-8') as f:
            for line in f:
                cols = line.strip().split('\t')
                if len(cols) < 2: continue label = cols[0] # "ポジ"や"ネガ"を抽出 word = cols[1] # 単語を抽出 # スコアをラベルに応じて決定 if "ネガ" in label: score = -1.0 elif "ポジ" in label: score = 1.0 else: score = 0.0 # 中立の場合 sentiment[word] = score # 単語とスコアを登録 return sentiment # --- 感情分析処理 --- def analyze_sentiment(text, sentiment_dict, nlp): doc = nlp(text) positive_count = 0 negative_count = 0 print("=== マッチ単語とスコア ===") for token in doc: lemma = token.lemma_ # 語幹 print(f"処理中: {token.text}({lemma})") # 辞書に単語がマッチした場合 if lemma in sentiment_dict: score = sentiment_dict[lemma] print(f"マッチ: {lemma} → {score:+.1f}") if score > 0:
                positive_count += 1
            elif score < 0: negative_count += 1 total_words = len([token for token in doc if not token.is_punct]) # 句読点を除く単語数 sentiment_score = positive_count - negative_count # ポジティブ単語数 - ネガティブ単語数 normalized_score = sentiment_score / total_words * 10 if total_words > 0 else 0  # スコアの正規化

    result = "neutral"
    if normalized_score > 0:
        result = "positive"
    elif normalized_score < 0:
        result = "negative"

    print(f"\n感情スコア: {normalized_score:+.1f}")
    print(f"判定結果: {result}")
    print(f"ポジティブ単語数: {positive_count}")
    print(f"ネガティブ単語数: {negative_count}")

    return {
        "score": normalized_score,
        "positive_count": positive_count,
        "negative_count": negative_count,
        "result": result
    }

# --- メイン関数 ---
def main():
    text = """シンドラーとはね、第二次世界大戦中に、ユダヤ人をナチスから守った人だよ。彼は、ドイツのオースヴィッツ強制収容所から、たくさんのユダヤ人を助けたんだ。すごい人だよね!"""

    print("GiNZAロード中...")
    nlp = spacy.load("ja_ginza")

    print("辞書読み込み中...")
    sentiment_dict = load_combined_sentiment_dict([
        "wago.121808.pn"
    ])

    print(f"\n分析対象: {text}\n")
    analyze_sentiment(text, sentiment_dict, nlp)

if __name__ == "__main__":
    main()

<実行結果>

クリスマスのことを語っている文章を入力にすると、

% python emotion.py
GiNZAロード中...
辞書読み込み中...

分析対象: うん、そうだよ!プレゼントとか、クリスマスツリーとか、すごく楽しいよね!

=== マッチ単語とスコア ===
処理中: うん(うん)
処理中: 、(、)
処理中: そう(そう)
処理中: だ(だ)
処理中: よ(よ)
処理中: !(!)
処理中: プレゼント(プレゼント)
処理中: と(と)
処理中: か(か)
処理中: 、(、)
処理中: クリスマスツリー(クリスマスツリー)
処理中: と(と)
処理中: か(か)
処理中: 、(、)
処理中: すごく(すごい)
処理中: 楽しい(楽しい)
マッチ: 楽しい → +1.0
処理中: よ(よ)
処理中: ね(ね)
処理中: !(!)

感情スコア: +0.7
判定結果: positive
ポジティブ単語数: 1
ネガティブ単語数: 0

感情スコアは+1 ~ -1の間に治るようにしたいから乗算してます、上限と下限もこの値で区切るようにした方がいいだろうね、

 

admin

ラズパイ5のWi-Fi不具合はSSD原因らしい

以前からラズパイ5のWi-Fiが不調、他のSSIDに切り替えられない、でしたがついにデフォルトのSSIDでも動作不安定になってリブートしても程なく通信が切れてVNCが使えない、あるいはターミナルが開くのにやたら時間かかるとかで使えないので数週間前にバックアップしてたSDカードでなおかつ有線LANにつないで調べてみると、

経緯は、

https://isehara-3lv.sakura.ne.jp/blog/2025/04/16/ラズパイ5のwi-fi不具合/

① 実はバックアップのSDカードから立ち上げるとSSIDの切り替えはできた

② ラズパイ5でSSDにSDカードからImagerでデータ転送してコピーあるいはラズパイ5でサラのイメージ書き込みしようとしても途中で失敗、MacでOSイメージ書き込んで(これは正常に終了)ラズパイ5に持ってきても立ち上がらない

ということで、極めて寿命が短かった(一月ちょっとか)けれどもSSDの不良というのが現段階の結論です(Macでは書き込めるからHATに原因という可能性もあるけれども)

P.S. とは言ってもMacBookではまともに扱えているから、ラズパイ5での使い方に問題と考えるべきかな、俗にいう相性と言われるやつだけど、Silicon Powerはイマイチらしいから

まあ筒の中に収納されて、温度もかなり上がるからSSDは今回は諦めかな

ラズパイ5のブラウザでSpeedTest実行するとラズパイ5のacモードの転送でも200Mbps以下で、有線LAN はn規格のアダプタ経由でも200Mbps以上は出てるから(有線LANはgiga Lanだから)、ラズパイ5のWi-Fiの性能は低すぎ故にWi-Fiは非常用と考えた方がよさそうだ

P.S. 2025/4/20

この部分の記述は誤り、つまりWi-Fi中継機が100Mbpsの有線LANなのに、なぜそれ以上の速度が出るかというと実はWi-Fiを経由してしまってるから、つまりLinuxの場合にはそういうルーティングも起こるらしい

 

admin

 

ラズパイ5のWi-Fi不具合

元々の問題(今現在解決できていないので途中経過)

ラズパイ5でSSIDが追加できない、より正確に言えば以前はpreconfiguredのWi-Fi SSIDがなければ他のSSIDに接続できていたのが接続できなくなったのでその調査として、ラズパイ0でやってみたことと、ラズパイ5の振る舞い

<wpa_supplicant.confを作成必要な問題:これはラズパイ0での実行時>

昨年終わり頃にOSがbookworm版にアップされているので、ラズパイ0で最新のOSでWi-Fiの初期設定を追加(rpi imagerでラズパイ0用のヘッドレスのイメージ書き込んでやってみた)、しかし最初の壁は起動したと思える時間待ってもWi-Fi内にラズパイ0が見つからない

作成したSDカードのルートに以下のwpa_supplicant.confファイルを作成してやると見えるようになった

country=JP
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1

network={
    ssid="your SSID"
    psk="your PW"
}

<nmcli(bookwormからはこのコマンドで制御になってる)での必要コマンド>

rescanやらないとキャッシュがクリアされないから、今接続中のSSIDしか見えない
$ sudo nmcli device wifi rescan

次にlist出力させる
$ sudo nmcli device wifi list

一回の入力で済ますなら、
$ sudo nmcli device wifi rescan && sleep 2 && nmcli device wifi list

SSIDの追加設定
$ sudo nmcli device wifi connect aterm-eb69c6-g password “your PW” hidden yes
Device ‘wlan0’ successfully activated with ‘unique UUIDの値’

設定済み接続リスト(-gに切り替えている)
$ nmcli connection show

接続先を切り替える時は例えば、
$ sudo nmcli connection up preconfigured

ここまでは正常動作、自宅以外のSSIDもちゃんと見えている普通の姿

————————–

<ラズパイ5のWi-Fi問題>

1. 自宅内と周辺のセンスできるはずのSSIDがほとんど見えない、感度が低下している状態と言えなくもないが、その割には受信できてるSSIDの電波強度はかなり強い

2. かつpreconfigured以外は見え方が不安定で、見えたり見えなかったり

3. 見えてる状態でSSID切り替えしようとすると、ハング状態になるからVNC接続では電源切るしかない

4. 当初は複数のSSID登録できて、自動切り替えもできてたから、その後のシステムの変更で発生しているようにも見える、ケース(筒)の影響の可能性は?ケースに収めた後に問題発生しているように思うから

そもそもアンテナが基板(CPU側)に構成されていて、なおかつクーリングファンの影響(遮蔽)も受けるだろうから、感度がそれほど期待できないということがある

ただしwavemonで見た限りは問題ないね

原因がどうしても判明しないときにはUSB Wi-Fiドングル(多分その方が無線的な特性はまともだろうと思う)、あるいはWi-Fiアダプタ使って有線LANでつなげるという選択肢もあるかな

 

admin

画像の物体検出軽量化(ラズパイ5)

Yoloは性能的には十分すぎる感じですが、やはりリソースを相当に消費します

https://isehara-3lv.sakura.ne.jp/blog/2025/04/12/yoloとefficientnetの違いと用途/

で、目的を人検出に絞って軽量化を検討してみた

efficientdet_lite0.tfliteのモデルをTFliteで動かすのが現状の割とメジャーな選択だと思われるのでやってみた

<ターゲット>

・ラズパイ5:8GBメモリ/256GB SSD

<コード>

LLMとの対話で生成された最終的なコード、カメラ画像のデータ(RGB)の並べ替えが必要です、パッケージ競合でPython用の環境は新しく作成しています

import cv2
import numpy as np
import tflite_runtime.interpreter as tflite
from picamera2 import Picamera2

# EfficientDet Lite0 モデルロード
interpreter = tflite.Interpreter(model_path="efficientdet_lite0.tflite")
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

# ラベル読み込み
with open("coco_labels_91.txt", "r") as f:
    labels = [line.strip() for line in f.readlines()]

def preprocess_image(image):
    resized = cv2.resize(image, (320, 320))
    resized = resized[:, :, [2, 1, 0]]  # RGBに
    return np.expand_dims(resized, axis=0).astype(np.uint8)

def postprocess_results(boxes, scores, classes, count, image_shape):
    detections = []
    for i in range(count):
        if scores[i] > 0.4:
            ymin, xmin, ymax, xmax = boxes[i]
            (left, right, top, bottom) = (
                int(xmin * image_shape[1]), int(xmax * image_shape[1]),
                int(ymin * image_shape[0]), int(ymax * image_shape[0])
            )
            detections.append({
                'box': (left, top, right, bottom),
                'class_id': int(classes[i]),
                'score': float(scores[i]),
                'label': labels[int(classes[i])] if int(classes[i]) < len(labels) else f"id:{int(classes[i])}"
            })
    return detections

def draw_detections(image, detections):
    for detection in detections:
        left, top, right, bottom = detection['box']
        label = f"{detection['label']} {detection['score']*100:.1f}%"
        cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)
        cv2.putText(image, label, (left, top - 10),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)

def main():
    # Picamera2 初期化
    picam2 = Picamera2()
    picam2.preview_configuration.main.size = (640, 480)
    picam2.preview_configuration.main.format = "RGB888"
    picam2.preview_configuration.align()
    picam2.configure("preview")
    picam2.start()

    while True:
        frame = picam2.capture_array()

        input_data = preprocess_image(frame)
        interpreter.set_tensor(input_details[0]['index'], input_data)
        interpreter.invoke()

        boxes = interpreter.get_tensor(output_details[0]['index'])[0]
        classes = interpreter.get_tensor(output_details[1]['index'])[0]
        scores = interpreter.get_tensor(output_details[2]['index'])[0]
        count = int(interpreter.get_tensor(output_details[3]['index'])[0])

        detections = postprocess_results(boxes, scores, classes, count, frame.shape)
        draw_detections(frame, detections)

        cv2.imshow("EfficientDet + PiCamera2", frame)
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break

    cv2.destroyAllWindows()

if __name__ == "__main__":
    main()

<実行結果>

タブレットに写した人物画像から人検出を行っていますが、それなりの確度で検出できてます、精度そのものはYoloよりは低い

ラズパイ5のリソースはCPUが100%程度で、メモリフットプリント的にも余裕はあります、CPU温度はファンは常時回転中で60℃程度、長時間だと全体がほんわりと暖かくなりますが、夏場も何とか耐えそう

ここのパーツはほぼ決まりだろうから、全体構成図を掲載、これからパーツを結合してアプリを作ります

 

 

 

admin

 

YoloとEfficientNetの違いと用途

ラズパイ5のカメラから動画取り込んでリアルタイムの認識は、

https://isehara-3lv.sakura.ne.jp/blog/2025/03/29/yoloを使ってみる/

でやってみたけれど、EfficientNetとの比較をラズパイ5でやってみる

Yoloのコードは極めてシンプルだけれども、EfficientNet(TFlite上で動作)は

前処理(cv2使用)やラベルテキスト(ImageNetLabels.txt)からの抽出処理を自前でやらないといけない、まあコードはLLM生成ではありますが

判定を甘くして、上位5個の候補を出力しています、TF(Tensor Flow)だともう少しコードは簡単らしいけれども

# 画面全体から尤もらしい物体を選択する

import cv2
import numpy as np
import matplotlib.pyplot as plt
import tflite_runtime.interpreter as tflite

# モデルロード
interpreter = tflite.Interpreter("EfB3_imagenet.tflite")
interpreter.allocate_tensors()

# 入出力情報
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

# 画像前処理
img_path = "test.jpg"
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_resized = cv2.resize(img, (300, 300))
input_data = np.expand_dims(img_resized, axis=0).astype("float32")

# 推論
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])[0]

# ラベル読み込み
with open("ImageNetLabels.txt", "r") as f:
    labels = [line.strip() for line in f.readlines()]
if labels[0].lower() == "background":
    labels = labels[1:]  # ずれを修正

# 結果表示
top_k = output_data.argsort()[::-1][:5]
for i in top_k:
    print(f"{labels[i]}: {output_data[i]*100:.2f}%")

# 結果を画像に描画
for i, idx in enumerate(top_k):
    label = labels[idx]
    score = output_data[idx]
    cv2.putText(img, f"{label}: {score*100:.2f}%", (10, 30 + i*30),
                cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)

# 表示と終了処理
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
while True:
    cv2.imshow("Window", img)
    if cv2.waitKey(1) & 0xFF == ord('q'):  # qキーで終了
        break
cv2.destroyAllWindows()

<Yolo>

 

 

<EfficientNet>

 

ということで目的によっての使い分けですが、person検出目的ならばYoloだろうというのが現時点、EfficientNetのラベルテキスト(ImageNetLabels.txt)にはpersonというラベルは存在してません

人検出で軽量化を目指すなら、TFlite + efficientdet_lite0.tfliteのような解もありそうですが、ラベル(coco_lables.txt)には80分類ぐらいあります、ちなみにyoloは50分類

 

admin

YOLOを使ってみる

ラズパイ5でカメラから取り込んだ画像の処理は、今ならYOLOがそこそこの精度で使えそうだからやってみた

全体の流れと動作確認できるPythonスクリプト

https://techblog-ai.com/【raspberry-pi-5xカメラ】yolov8-リアルタイム推論-usbカメラ-picameraモ/

Yoloのインスト

https://techblog-ai.com/【raspberry-pi-5】yolov8のインストール方法/

但しpipでpicameraインストしてはあかんらしい(見つからないと言われたよ)から、aptでインストした

$ sudo apt install -y python3-picamera2

前の仮想環境(venv)は汚染されたぽいから、新たな仮想環境(venv2)を作る、picameraも別環境だから再度インスト必要

静止画像からの検出スクリプトを動かしてみると

$ cat yolo.py
from ultralytics import YOLO
model = YOLO("yolov8x.pt")
results = model('test.png', save=True)

学習済みモデルの最高精度版(yolov8x.pt)をダウンロードしてきて検出してます、これは壁紙のスクショ(test.png)をターゲットに実行、結果の画像は省略

次にラズパイカメラの動画からの検出は、

こんな感じで、モバイル用の辞書(yolov8n.pt)でも精度は高そうですね

またフレーム周波数は数フレームぐらいでは動いてくれているようです

Yoloは負荷重いから、CPU温度は60℃ぐらいまでアップしてファンは常時回転してますが

 

admin

ラズパイ5のPythonでの音声入力デバイス指定

USBマイクの接続先をUSB2.0のコネクタからUSB3.0にしたら同じコードで入力がされない状態に、コメントアウトしている# device=2,を指定しないとダメ

import vosk
import pyaudio
import json
import numpy as np
import sounddevice as sd
import queue
import threading
import time

class VoskSpeechRecognizer:
    def __init__(self, model_path='./vosk-model-ja-0.22'):
        # モデルの初期化
        vosk.SetLogLevel(-1)
        self.model = vosk.Model(model_path)
        self.recognizer = vosk.KaldiRecognizer(self.model, 16000)
        
        # キュー設定
        self.audio_queue = queue.Queue()
        self.stop_event = threading.Event()
        
        # マイク設定
        self.sample_rate = 16000
        self.channels = 1
        
        # スレッド準備
        self.recording_thread = threading.Thread(target=self._record_audio)
        self.recognition_thread = threading.Thread(target=self._recognize_audio)
        
    def _record_audio(self):
        """
        連続的な音声録音スレッド
        """
        with sd.InputStream(
            samplerate=self.sample_rate, 
            channels=self.channels,
            dtype='int16',
            # device=2,
            callback=self._audio_callback
        ):
            while not self.stop_event.is_set():
                sd.sleep(100)
    
    def _audio_callback(self, indata, frames, time, status):
        """
        音声入力のコールバック関数
        """
        if status:
            print(status)
        self.audio_queue.put(indata.copy())
    
    def _recognize_audio(self):
        """
        連続的な音声認識スレッド
        """
        while not self.stop_event.is_set():
            try:
                audio_chunk = self.audio_queue.get(timeout=0.5)
                if self.recognizer.AcceptWaveform(audio_chunk.tobytes()):
                    result = json.loads(self.recognizer.Result())
                    text = result.get('text', '').strip()
                    if text:
                        print(f"{text}")
            except queue.Empty:
                continue
    
    def start_recognition(self):
        """
        音声認識の開始
        """
        self.stop_event.clear()
        self.recording_thread.start()
        self.recognition_thread.start()
    
    def stop_recognition(self):
        """
        音声認識の停止
        """
        self.stop_event.set()
        self.recording_thread.join()
        self.recognition_thread.join()

def main():
    recognizer = VoskSpeechRecognizer()
    
    try:
        print("音声認識を開始します。Ctrl+Cで終了できます。")
        recognizer.start_recognition()
        
        # 無限ループを防ぐ
        while True:
            time.sleep(1)
    
    except KeyboardInterrupt:
        print("\n音声認識を終了します...")
    finally:
        recognizer.stop_recognition()

if __name__ == "__main__":
    main()

原因はいまいち不明ですが、もとのソースにマイクのチャネル指定はなかった訳だけど、USB3.0側にすると明示しないとダメそうです

sounddeviceで検索すると、0指定にするのが正しそうですが、0にするとエラーが出ます

2はシステムのデフォルト指定なので、それはそれで正しそう、但し2が常にデフォルトではあると限らないから、

device= “sysdefault”,

とデフォルト指定と明示した方が、音声入力手段が複数あれば別ですが、一個しか無いんだったらこれが汎用で使えそうです

$ python
Python 3.11.2 (main, Nov 30 2024, 21:22:50) [GCC 12.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import sounddevice as sd
>>> print(sd.query_devices())  # すべてのデバイス一覧を表示
   0 SF-558: USB Audio (hw:0,0), ALSA (1 in, 0 out)
   1 UACDemoV1.0: USB Audio (hw:2,0), ALSA (0 in, 2 out)
   2 sysdefault, ALSA (128 in, 0 out)
   3 spdif, ALSA (1 in, 0 out)
   4 lavrate, ALSA (128 in, 0 out)
   5 samplerate, ALSA (128 in, 0 out)
   6 speexrate, ALSA (128 in, 0 out)
   7 pulse, ALSA (32 in, 32 out)
   8 speex, ALSA (1 in, 0 out)
   9 upmix, ALSA (8 in, 0 out)
  10 vdownmix, ALSA (6 in, 0 out)
* 11 default, ALSA (32 in, 32 out)

 

admin

ラズパイ5のドライブをSSDにする

そこそこSDカードの中身も落ち着いてきて、サイズも20GB/64GBぐらいになってきたので、運用寿命と速度を勘案してSSDにしました

仕様は写真から読み取れますが、アダプタボードとNVMe仕様のSSD、サイズは256GBでおそらく一生持ちそう

ディスクの作成は、SD Card Copierを使って行いました、

New Partition UUIDsにチェックは重要、チェックしないと完全クローンになるので、SDカードとSSD同時実装時に区別つきません

最初、チェックしないでコピーしたのでリカバリに苦労、以下LLMに聞きながら実行した手順、要は「MBR/GPTヘッダ完全削除
」をしないとダメのようです

同じUUIDでコピーした時のリカバリ手段、macで単純ディスク消去だと
MBR/GPTヘッダが残ってるらしく不完全な初期化です

$ diskutil list # SSDのドライブ番号を検索する(/dev/disk4 だった)
$ diskutil unmountDisk /dev/disk4	# 外付けSSD番号を指定
# MBR/GPTヘッダ完全削除
(初期化するからディスク名や形式は重要ではないはず)
$ diskutil eraseDisk JHFS+ NewDiskName /dev/disk4
$ sudo dd if=/dev/zero of=/dev/disk4 bs=1M count=100

インストールして、bootデバイスを探す時間は無駄なのでSSDを一番最初にアクセスするような設定に変更します

$ sudo rpi-eeprom-config --edit
 ファイルの461 -> 416に変更(右から順番に探して、6はSSDです)

eepromへの書き込みなので変更直後に同じコマンド打っても反映されずリブートでeepromから読み込まれることで設定が反映されてることを確認できます、また編集ファイルはtmpファイルで中身の妥当性の検証を行ってから本来の設定ファイルを書き換えます

$dfの結果はこんな感じ、

電源オン起動時間は体感でも明らかに早いし、アプリ(例えばブラウザ)の起動も早い、VNCでダミーHDMI入れてないから、相変わらずフレームレートは出ないけども

P.S. デスクアクセス性能

以前SDカードの値があったので比較してみる(上段2,530がSDカードで下段39,288がSSD)

$ sudo curl https://raw.githubusercontent.com/TheRemote/PiBenchmarks/master/Storage.sh | sudo bash


     Category                  Test                      Result     
HDParm                    Disk Read                 90.82 MB/sec             
HDParm                    Cached Disk Read          90.94 MB/sec             
DD                        Disk Write                32.5 MB/s                
FIO                       4k random read            6317 IOPS (25268 KB/s)   
FIO                       4k random write           845 IOPS (3382 KB/s)     
IOZone                    4k read                   29989 KB/s               
IOZone                    4k write                  3288 KB/s                
IOZone                    4k random read            30032 KB/s               
IOZone                    4k random write           3268 KB/s                

                          Score: 2530                             


     Category                  Test                      Result     
HDParm                    Disk Read                 441.07 MB/sec            
HDParm                    Cached Disk Read          432.23 MB/sec            
DD                        Disk Write                345 MB/s                 
FIO                       4k random read            87521 IOPS (350085 KB/s) 
FIO                       4k random write           85333 IOPS (341333 KB/s) 
IOZone                    4k read                   132985 KB/s              
IOZone                    4k write                  169992 KB/s              
IOZone                    4k random read            63871 KB/s               
IOZone                    4k random write           181370 KB/s              

                          Score: 39288                                       

今時のベンチマークに比較して、めちゃくちゃ早いわけではないが、妥当な値と言えるだろう

 

admin

ラズパイ5で日本語入力

vimで日本語入力できないなと思ったら、そもそも今までラズパイで日本語入力使ったことがなかったのだ、

ツールとしてはfcitx-mozcを使うと日本語は入力できるようにはなる、ただし使い勝手はイマイチ感あるから、Macのエディタで作成したものを貼り付けるのが実用的だな、と思ったから非常手段かもしれない

 

admin

 

 

比較のついでにラズパイzeroの実行速度も測定してみた

ラズパイzeroは段違いに遅いことはわかっていたけれども、どれだけ遅いのかをみてみた、ソースコードは共通ですがzeroはシングルコアなのでマルチスレッドの数値はなし

コンパイルもzeroでは実質的にはできないからMac上でクロスでバイナリ作成してます

比較してみると、他に比べて絶望的に遅いことがわかります、まあアプリケーションによって使い分けるわけではありますが

 

admin